skip to main content


Search for: All records

Creators/Authors contains: "Wijesekera, Primal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As devices with always-on microphones located in people’s homes, smart speakers have significant privacy implications. We surveyed smart speaker owners about their beliefs, attitudes, and concerns about the recordings that are made and shared by their devices. To ground participants’ responses in concrete interactions, rather than collecting their opinions abstractly, we framed our survey around randomly selected recordings of saved interactions with their devices. We surveyed 116 owners of Amazon and Google smart speakers and found that almost half did not know that their recordings were being permanently stored and that they could review them; only a quarter reported reviewing interactions, and very few had ever deleted any. While participants did not consider their own recordings especially sensitive, they were more protective of others’ recordings (such as children and guests) and were strongly opposed to use of their data by third parties or for advertising. They also considered permanent retention, the status quo, unsatisfactory. Based on our findings, we make recommendations for more agreeable data retention policies and future privacy controls. 
    more » « less
  2. It is commonly assumed that “free” mobile apps come at the cost of consumer privacy and that paying for apps could offer consumers protection from behavioral advertising and long-term tracking. This work empirically evaluates the validity of this assumption by comparing the privacy practices of free apps and their paid premium versions, while also gauging consumer expectations surrounding free and paid apps. We use both static and dynamic analysis to examine 5,877 pairs of free Android apps and their paid counterparts for differences in data collection practices and privacy policies between pairs. To understand user expectations for paid apps, we conducted a 998-participant online survey and found that consumers expect paid apps to have better security and privacy behaviors. However, there is no clear evidence that paying for an app will actually guarantee protection from extensive data collection in practice. Given that the free version had at least one thirdparty library or dangerous permission, respectively, we discovered that 45% of the paid versions reused all of the same third-party libraries as their free versions, and 74% of the paid versions had all of the dangerous permissions held by the free app. Likewise, our dynamic analysis revealed that 32% of the paid apps exhibit all of the same data collection and transmission behaviors as their free counterparts. Finally, we found that 40% of apps did not have a privacy policy link in the Google Play Store and that only 3.7% of the pairs that did reflected differences between the free and paid versions. 
    more » « less
  3. Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy. In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus. Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work. 
    more » « less
  4. The dominant privacy framework of the information age relies on notions of “notice and consent.” That is, service providers will disclose, often through privacy policies, their data collection practices, and users can then consent to their terms. However, it is unlikely that most users comprehend these disclosures, which is due in no small part to ambiguous, deceptive, and misleading statements. By comparing actual collection and sharing practices to disclosures in privacy policies, we demonstrate the scope of the problem. Through analysis of 68,051 apps from the Google Play Store, their corresponding privacy policies, and observed data transmissions, we investigated the potential misrepresentations of apps in the Designed For Families (DFF) program, inconsistencies in disclosures regarding third-party data sharing, as well as contradictory disclosures about secure data transmissions. We find that of the 8,030 DFF apps (i.e., apps directed at children), 9.1% claim that their apps are not directed at children, while 30.6% claim to have no knowledge that the received data comes from children. In addition, we observe that 10.5% of 68,051 apps share personal identifiers with third-party service providers, yet do not declare any in their privacy policies, and only 22.2% of the apps explicitly name third parties. This ultimately makes it not only difficult, but in most cases impossible, for users to establish where their personal data is being processed. Furthermore, we find that 9,424 apps do not use TLS when transmitting personal identifiers, yet 28.4% of these apps claim to take measures to secure data transfer. Ultimately, these divergences between disclosures and actual app behaviors illustrate the ridiculousness of the notice and consent framework. 
    more » « less